·强激光物理与技术·

用于探测器标定的单能 X 射线源研究

许泽方^{1,2}, 闫永清¹, 强鹏飞¹, 唐 波³, 盛立志¹, 苏 桐¹, 李 昀^{1,2}, 张蕊利¹
 (1. 中国科学院西安光学精密机械研究所, 西安 710119; 2. 中国科学院大学, 北京 100049; 3. 西北核技术研究所, 西安 710024)

摘 要: 为提高X射线探测器的标定精度,在荧光X射线源的基础上,提出在荧光X射线出射通道设置滤 光片的方法提高X射线纯度。通过蒙特卡罗建立仿真模型,分析了辐射体发生K层光电效应的概率与原子序 数的关系,并得到荧光强度和纯度随滤光片厚度的变化曲线。在大气环境下,采用硅漂移半导体探测器测试了 荧光X射线源的能谱分布和光子流量,分析X射线管管电压对光子流量和荧光纯度的影响。在辐射体材料为 铜,滤光片(镍)厚度为0 µm、10 µm 和 30 µm 时,测得的荧光X射线纯度分别为75.61%、85.38% 和 84.25%,光子流 量分别为3425 phs/s、2023 phs/s 和 1192 phs/s,确认了滤光片厚度对荧光X射线纯度和强度的影响,为解决荧光 X射线光源单色性不足难以对X射线探测器进行高精度标定的问题提供了方向。

关键词: 荧光X射线源; 滤光片; 探测器标定 中图分类号: O572.21⁺2 文献标志码: A doi: 10.11884/HPLPB202335.220422

Single energy X-ray source for calibration of X-ray detectors

Xu Zefang^{1,2}, Yan Yongqing¹, Qiang Pengfei¹, Tang Bo³, Sheng Lizhi¹, Su Tong¹, Li Yun^{1,2}, Zhang Ruili¹ (1. State Key Laboratory of Transent Optics and Photonics, Xi 'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi 'an 710119, China;

University of Chinese Academy of Sciences, Beijing 100084, China;
 Northwest Nuclear Technology Institute, Xi'an 710024, China)

Abstract: To improve the calibration accuracy of X-ray detectors, this paper presents a method of placing filters in fluorescent X-ray emission channels to improve the purity of X-rays. Monte Carlo simulation model was established to analyze the relationship between the probability of photoelectric effect in K layer and the atomic number, and the curve of fluorescence intensity and purity with filter thickness was obtained. In atmospheric environment, the energy spectrum distribution and photon flux of fluorescent X-ray source were measured by silicon drift semiconductor detector, and the effect of X-ray tube voltage on photon flux and fluorescence purity was analyzed. When the radiator material is copper and the thickness of the filter (nickel) is 0 μ m, 10 μ m and 30 μ m, the purity of fluorescence X-ray measured is 75.61%, 85.38% and 84.25%, and the photon flux is 3425 phs/s, 2023 phs/s and 1 192 phs/s, respectively. The influence of filter thickness on the purity and intensity of fluorescent X-ray is confirmed, which provides a direction for solving the problem that it is difficult to calibrate X-ray detectors with high accuracy due to the lack of monochromatism of fluorescent X-ray light source.

Key words: fluorescent X-ray source, filter, calibration of detector

2017年,中国第一颗空间 X 射线科学卫星——硬 X 射线调制望远镜(HXMT)成功发射,基于其取得的一系列 重要研究成果^[1-2],我国在空间 X 射线天文观测领域进行了进一步的投入布局,相关科学卫星包括 GECAM^[3]、ASO-S^[4]、SVOM^[5-6]、EP^[7]和 eXTP^[8]等,各类卫星搭载了不同种类的 X 射线探测器。探测器的能量分辨率、探测效率和 均匀性等关键参数直接影响空间科学成果的准确性,因此必须经过严格的地面测试标定。标准 X 射线源作为地 面标定系统中的重要组成部分,其研究重要性不言而喻。

^{*} 收稿日期:2022-12-22; 修订日期:2023-06-26

基金项目:国家重点实验室基金项目(SKLIPR2021);陕西省自然科学基础研究计划项目(2023-JC-ZD-40);中国科学院西部青年学者项目(XAB2020YN13);国家自然科学基金项目(62271483)

联系方式:许泽方, xuzefang524@163.com。

通信作者:强鹏飞, qiangpengfei@opt.ac.cn。

目前产生标准 X 射线的方式有四种:放射源、同步辐射 X 射线源、X 射线布拉格晶体衍射和 K 荧光 X 射线 源。放射源安全性不高、能量点单一、数量少且不可调节^[9]。同步辐射 X 射线光源^[10] 设备庞大、运行成本高、工 作时间受限。布拉格晶体需要精确的制造和校准,设备复杂性高^[11,12]。相比之下,K 荧光 X 射线源得益于较多的 二次辐射体材料,具有流量强、单色点多、光谱纯度高,成本低且易于控制等优点^[13]。中国科学院西安光学精密机 械研究所^[4]和高能物理研究所^[15]分别对用于标定脉冲星导航探测器的荧光 X 射线源和用于软 X 射线探测器标定 的 X 射线二次多靶源进行了研究。荧光 X 射线源中 K_β 荧光占有较大的比重,严重影响了 X 射线源的单色性能, 无法进一步满足探测器高精度标定的要求。因此,本论文基于 MCNP 模拟仿真了不同种类靶材和不同滤光片厚 度条件下的荧光 X 射线纯度,并进行了实验验证,相关结果将为 X 射线探测器提供测试基础。

1 理论仿真与分析

1.1 仿真模型

在 MCNP 软件中建立如图 1 所示的 X 射线荧光装置仿真模型, 以铬 (Cr)、铁 (Fe)、和铜 (Cu) 三种辐射体材料为研究对象, 一次靶材料为钼 (Mo), 管电压 (*V*_a) 设置为 50 kV, 管电流 (*I*_a) 为 200 μA, 记录探测器单位面积上的光子通量, 不同辐射体材料的辐射能谱如图 2 所示。可以看出, 探测器接收到的 X 射线中, 不仅存在辐射体的特征 X 射线, 还存在散射射线。

光子个数表示辐射 X 射线的强度,分别统计计算辐射体材料的 K_a、K 层荧光和散射 X 射线的强度和占比,结果列于表 1。可以发现,散射 X 射线占比随着辐射体材料原子序数的增加呈现逐渐减小的趋势,这是因为波长为

Table 1 Spectral simulation data of fluorescence X-ray sources with different radiators						
material	K_{α} photons	K_{α} proportion/%	K photons	K proportion/%	scattered photons	scattered photon proportion/%
Cr	46 622	79.791	53 529	82.426	64941	17.574
Fe	100 289	80.270	114567	91.698	10373	8.302
Cu	252727	85.466	286400	96.853	9304	3.147

表1 不同辐射体的荧光 X 射线源能谱仿真数据

λ的散射光强度随散射物原子序数的增加而减小。K层荧光纯度与散射光子占比呈现相反的趋势,相关理论依据 可根据 Bambynek 等人给出的 K 层发生光电效应的概率 (ω_k) 的半经验公式解释^[16]

 $\omega_{\rm K} = \frac{\left(\sum_{i=0}^{i=3} C_i Z^i\right)^4}{1 + \left(\sum_{i=0}^{i=3} C_i Z^i\right)^4} \tag{(1)}$

式中: Z 表示原子序数, C_i 表示拟合参数。从式中可以看出, ω_K 是原子序数 Z 的增函数, 与仿真结果相一致。对于 轻元素, 较小的 ω_K 值意味着优先通过俄歇效应产生激发过程而非光电效应^[17]。

1.2 荧光 X 射线能谱随滤光片厚度变化

由图 2 可知, 荧光 X 射线能谱中, K_β的占比严重影响荧 光 X 射线源的纯度, 因此需要进行滤光以提高 K_α的纯度。 利用同一物质对不同波长的 X 射线具有不同程度的衰减作 用, 在荧光 X 射线出射方向添加滤光片, 使其对 K_β能谱强烈 吸收, 而对 K_α 吸收较弱, 实现荧光纯度的提升。滤光片材料 的原子序数一般比辐射体材料的原子序数小, 使其 K 吸收限 正好位于辐射体的特征谱线 K_α 和 K_β 之间^[18], 图 3 为厚度 10 μm 的镍片在光子能量为 0~30 keV 时的吸收率曲线, 其吸收限 为 8.433 keV, 位于辐射体 Cu 的 K_α 和 K_β 特征能谱之间。

采用图 1 所示的仿真模型, 以 Cu 为辐射体, Ni 为滤光 片, 计算不同 Ni 片厚度下的 K_α、K_β、散射光子的强度和占 比, 其强度和纯度随 Ni 片厚度变化的曲线如图 4 所示。从

图可以看出, K_β荧光产额和纯度随着 Ni 片厚度的增加在不断减小, K_α荧光产额随着 Ni 片厚度的增加而不断降低, 纯度呈现先增加后减小的趋势, 这是因为随着滤光片厚度的增加, 散射成分对荧光纯度的影响不断增大, 导致 当滤光片厚度达到某一值时, 荧光纯度达到最大值。

Fig. 4 Variation curve of intensity and proportion of the radiator Cu with the thickness of the Ni sheet 图 4 辐射体 Cu 的 K_{α} 、 K_{β} 和散射光子的强度和占比随 Ni 片厚度变化曲线

2 实验结果与分析

为了验证上述仿真结果的可信度,搭建了如图5所示的 实验系统,装置中所用的 X 射线管为栅极控制的 Mo 靶 X 射 线管[19], 探测器选用 Amptek 公司的 X-100SDD 对 X 射线的光 源能谱分布、光子流量等数据进行探测,能量分辨率可达 125 eV@5.9keV,滤光片放置在装置内部的荧光出射通道中。

2.1 辐射体初级荧光 X 射线能谱测试

管电压设置为 50 kV, 管电流为 200 µA, 积分时间为 1 min,转动转靶,由 SDD 采集到的不同辐射体材料的 X 射线 能谱如图6所示。统计不同辐射体材料的能谱数据,结果列于 表 2。实验数据与仿真数据存在偏差, X 射线能谱的测量误 差和蒙特卡罗模拟程序中的物理反应截面的不确定度是偏 差的主要贡献因素。此外,辐射体材料中杂质的影响也是可 能因素之一。

Fig. 5 Photo of experimental setup 图 5 实验装置实物图

Fig. 6 Fluorescence X-ray energy spectrum of different radiation materials 图 6 不同辐射体材料的荧光 X 射线能谱

	表 2	测得的不同辐射体材料的能谱数据
Table 2	Measu	red spectral data of different radiation materials

		-		-
K_{α} proportion/%	K photons	K proportion/%	scattered photons	scattere

material	K_{α} photons	K_{α} proportion/%	K photons	K proportion/%	scattered photons	scattered photon proportion/%
Cr	15410	45.72	18273	54.215	15432	45.785
Fe	39177	64.017	46347	75.733	14850	24.267
Cu	155442	75.642	183 030	89.067	22466	10.933
Ge	177 050	77.485	208 868	91.410	19627	8.59
Zr	298287	79.044	351258	93.081	25733	6.819

2.2 光源光子流量测试

衡量 X 射线光源能否满足需求的另一个重要参数是光子流量。在荧光靶材与滤光片确定后,影响光子流量的 另外几个因素是 X 射线管的管电流、探测距离和管电压等。本研究团队在 2015 年对荧光 X 射线源的光子流量与 X 射线管的管流、探测距离之间的关系进行了研究^[14]。表 3 是以 Cu 为辐射体, X 射线管管电流 *I_a* = 200 μA, 不同 V_a 时测得的荧光 X 射线源 K_α 光子流量、K_α纯度和散射光子占比。从表 3 中的数据可以发现:荧光 X 射线光源的 K_α 光子流量随管电压的增大而增大, 而荧光纯度呈现与光子流量相反的趋势。

$I_{\rm a}/\mu{\rm A}$	$V_{\rm a}/{ m kV}$	K_{α} counting rate/(phs·s ⁻¹)	K_{α} proportion/%	scattered photon proportion/%
200	20	45	79.147	7.856
200	25	231	78.247	8.360
200	30	600	77.253	9.182
200	35	1 007	76.568	9.734
200	40	1 509	76.013	10.437
200	45	2047	75.815	10.491
200	50	2589	75.608	10.932

表 3 不同 V_a 下测得的辐射体 Cu 的光子流量数据 Table 3 Photon flux data of radiator Cu measured under different V_a

根据 Storm^[20] 推导出的 K 层荧光强度与散射光子强度公式,分析 K_a 光子流量和纯度与 X 射线管电压 V_a的关系

$$I_{K_{u}} = \left(\frac{1}{4\pi}\right) (\sqrt{2}S) I \int_{E_{u}}^{E_{u}} \frac{\mu_{\tau K} \omega_{K_{u}}}{\mu_{\kappa} + \mu_{K_{u}}} \left\{ 1 - \exp[-\sqrt{2}(\mu_{\kappa} + \mu_{K_{u}})t] \right\} d\kappa$$
(2)

$$I_{\rm coh} = I \sqrt{2S} \frac{d\sigma_{\rm coh}}{d\Omega} \frac{1}{2\mu_k} [1 - \exp(-2\sqrt{2}\mu_k t)]$$
(3)

$$I_{\rm inc} = I \sqrt{2S} \frac{1}{(1 - k'/m_0 c^2)^2} \frac{\mathrm{d}\sigma_{\rm inc}}{\mathrm{d}\Omega} \frac{1}{\mu_k + \mu_{k'}} \left\{ 1 - \exp[-\sqrt{2}(\mu_k + \mu_{k'})t] \right\}$$
(4)

式中: I_{K_x} 、 I_{coh} 和 I_{inc} 分别表示由初始强度为I的 X 射线与厚度为t的辐射体作用产生的 K_a 荧光强度、相干散射和非 相干散射光子强度, S 表示入射束的面积, μ_{rK} 表示 K 壳层电子光电效应衰减系数, ω_{K_a} 表示 K 壳层产生的 K_a 光子所 占比例, μ_k 表示能量为 κ 的入射光子的线衰减系数, μ_{K_a} 表示 K_a 荧光的衰减系数, E_{bK} 表示辐射体 K 壳层电子的结合 能, E_0 表示入射 X 射线的最大能量, σ_{coh} 和 σ_{inc} 分别表示相干散射系数和非相干散射系数, Q表示立体角, μ_k 表示能 量为k的散射光子的衰减系数, 其中 $k' = \frac{k}{1+k/m_0c^2}$ 。X 射线管产生的 X 射线光子的最大能量取决于 V_a , 并且强度 $I = V_a$ 存在如下的关系

$$I \propto I_{\rm a} Z V_{\rm a}^{\ m} \tag{5}$$

分析公式(2)、(3)、(4)、(5),可以发现, V_a增加在使得 K_α强度增加的同时,也会使散射光子的强度增加,影响 荧光强度。因此,在实际应用中,应根据光源的使用目的来确定,如当用于辐射防护监测仪表相应校准时,应根据 光子强度的要求,选择 K_α纯度尽可能高的V_a值;而当用于谱仪刻度或者探测器标定时,在满足 K_α纯度要求的前提 下,选择较大的V_a值以保证峰计数的统计性。

由于实验条件有限,本论文只对辐射体为 Cu,滤光片为 Ni 进行了测试, Ni 片厚度分别为 10 μm 和 30 μm。图 7 为 SDD 探测器采集到的荧光 X 射线分别透过厚度为 0 μm、10 μm 和 30 μm 的 Ni 片的能谱分布图。对比图 7(a)、 图 7(b)和图 7(c)可以发现:随着滤光片厚度的增加, K_α和 K_β的强度在不断减小,其中, K_β相比于 K_α衰减更强, Ni 片厚度为 30 μm 时, K_β基本被完全衰减。图 7(a)、图 7(b)和图 7(c)中的 K_α纯度分别为 75.61%、85.38% 和 84.25%, 光子流量分别为 3425 phs/s、2023 phs/s 和 1192 phs/s,趋势与模型计算结果相一致。能谱测试结果表明,滤光片可以 有效提高 K_α荧光的纯度,但是同时也会降低荧光 X 射线的强度,因此在实际应用过程中,应综合考虑纯度和强度 要求,选择厚度合适的滤光片。

3 结 论

本文在分析影响荧光 X 射线源纯度因素的基础上提出在出射通道中增加滤光片以提高 K_α的纯度的方法,通过 MCNP 仿真和实验分析验证了滤光片厚度对荧光 X 射线源纯度及强度的影响,为解决荧光 X 射线光源单色性

Fig. 7 Fluorescence X-ray energy spectrum of Cu in radiators with different Ni thickness 图 7 不同 Ni 片厚度辐射体 Cu 的荧光 X 射线能谱

不足难以对 X 射线探测器进行高精度标定的问题提供了方向; 验证了散射效应对 K_a 纯度的影响以及辐射体材料 发生 K 层光电效应与原子序数的关系; 分析了 X 射线管电压 V_a 与 K_a强度、散射 X 射线强度之间的关系。不过荧 光 X 射线源的单色性还存在不足, 如何进一步提高其单色性, 降低散射对荧光纯度的影响, 是下一步要做的工作。

参考文献:

- Li Tipei, Xiong Shaolin, Zhang Shuangnan, et al. *Insight*-HXMT observations of the first binary neutron star merger GW170817[J]. Science China Physics, Mechanics & Astronomy, 2018, 61: 031011.
- [2] Tuo Youli, Ge Mingyu, Song Liming, et al. Insight-HXMT observations of the Crab pulsar [J]. Research in Astronomy and Astrophysics, 2019, 19: 087.
- [3] Zhang Dali, Li Xinqiao, Xiong Shaolin, et al. Energy response of GECAM gamma-ray detector based on LaBr₃: Ce and SiPM array[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 921: 8-13.
- [4] Wang Shen, Guo Jianhua, Zhang Yan, et al. High-resolution pixelated CdZnTe detector prototype system for solar hard X-ray imager[J]. Nuclear Science and Techniques, 2019, 30: 42.
- [5] Dong Yongwei, Wu Bobing, Li Yanguo, et al. SVOM gamma ray monitor [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(1): 40-42.
- [6] Götz D, Paul J, Basa S, et al. SVOM: a new mission for gamma-ray burst studies [J]. AIP Conference Proceedings, 2009, 1133: 25-30.
- [7] Yuan Weimin, Zhang Chen, Chen Yong, et al. Einstein probe: exploring the ever-changing X-ray universe[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2018, 48: 039502.
- [8] Zhang Shuangnan, Santangelo A, Feroci M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62: 29502.
- [9] Guo Siming, Jiang Zheng, Wu Jinjie, et al. Research on a tunable monochromatic X-rays source in (5~40) keV[J]. Applied Radiation and Isotopes, 2022, 181: 110096.
- [10] Kobayashi K, Yabashi M, Takata Y, et al. High resolution-high energy X-ray photoelectron spectroscopy using third-generation synchrotron radiation source, and its application to Si-high k insulator systems[J]. Applied Physics Letters, 2003, 83(5): 1005-1007.
- [11] Zhou Xu, Li Xinqiao, Xie Yaning, et al. Introduction to a calibration facility for hard X-ray detectors [J]. Experimental Astronomy, 2014, 38(3): 433-441.
- [12] Gambaccini M, Tuffanelli A, Taibi A, et al. Bragg-diffraction-based quasi-monochromatic source for mammography using mosaic crystals[C]//Proceedings of SPIE 3770, Medical Applications of Penetrating Radiation. 1999: 174-184.
- [13] Csete I. Production of fluorescent X-rays from 8 to 100 keV[J]. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 1992, 43(6): 767-776.
- [14] 代锦飞, 赵宝升, 盛立志, 等. 标定脉冲星导航探测器的荧光X射线光源[J]. 物理学报, 2015, 64: 149071. (Dai Jinfei, Zhao Baosheng, Sheng Lizhi, et al. Ffluorescence X-ray source used for calibrating the detector of X-ray navigation[J]. Acta Physica Sinica, 2015, 64: 149071)
- [15] 祝宇轩, 王于仨, 陈勇, 等. 用于软X射线探测器标定的X射线二次多靶源[J]. 核技术, 2021, 44: 050402. (Zhu Yuxuan, Wang Yusa, Chen Yong, et al. X-ray secondary multiple target sources for calibration of soft X-ray detectors[J]. Nuclear Techniques, 2021, 44: 050402)
- [16] Bambynek W, Crasemann B, Fink R W, et al. X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities[J]. Reviews of Modern Physics, 1972, 44(4): 716-813.
- [17] Ménesguen Y, Lépy M C. Mass attenuation coefficients in the range $3.8 \le E \le 11$ keV, K fluorescence yield and K_β/K_α relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(16): 2477-2486.
- [18] 梁敬魁. 粉末衍射法测定晶体结构-上册: X射线衍射结构晶体学基础[M]. 2版. 北京: 科学出版社, 2011. (Liang Jingkui. Determination of crystal structure by powder method (Volume 1)[M]. 2nd ed. Beijing: Science Press, 2011)
- [19] 盛立志,赵宝升,吴建军,等. X射线脉冲星导航系统模拟光源的研究[J]. 物理学报, 2013, 62: 129702. (Sheng Lizhi, Zhao Baosheng, Wu Jianjun, et al. Research of X-ray pulsar navigation simulation source[J]. Acta Physica Sinica, 2013, 62: 129702)
- [20] Storm E. Bremsstrahlung-induced K-fluorescent radiation [J]. Journal of Applied Physics, 1976, 47(7): 3060-3070.